C$_2$-Symmetric Copper(II) Complexes as Chiral Lewis Acids. Scope and Mechanism of Catalytic Enantioselective Aldol Additions of Enolsilanes to (Benzyloxy)acetaldehyde

David A. Evans,* Marisa C. Kozlowski, Jerry A. Murry, Christopher S. Burgey, Kevin R. Campos, Brian T. Connell, and Richard J. Staples

Contribution from the Department of Chemistry and Chemical Biology, Harvard University, Cambridge, Massachusetts 02138

Received August 19, 1998

Abstract: C$_2$-Symmetric bis(oxazolinyl)pyridine (pybox)–Cu(II) complexes have been shown to catalyze enantioselective Mukaiyama aldol reactions between (benzyloxy)acetaldehyde and a variety of silylketene acetics. The aldol products are generated in high yields and in 92–99% enantiomeric excess using as little as 0.5 mol % of chiral catalyst [Cu((S,S)-Ph-pybox)]([SbF$_6$]$_2$). With substituted silylketene acetics, syn reaction diastereoselection ranging from 95:5 to 97:3 and enantioselectivities ≥95% are observed. Investigation into the reaction mechanism utilizing doubly labeled silylketene acetics indicates that the silyl-transfer step is intermolecular. Further mechanistic studies revealed a significant positive nonlinear effect, proposed to arise from the selective formation of the [Cu((S,S)-Ph-pybox)]((R,R)-Ph-pybox)]([SbF$_6$]$_2$: 21% ligand:metal complex. A stereochemical model is presented in which chelation of (benzyloxy)acetaldehyde to the metal center to form a square pyramidal copper intermediate accounts for the observed sense of induction. Support for this proposal has been obtained from double stereodifferentiating reactions, EPR spectroscopy, ESI spectrometry, and, ultimately, the X-ray crystal structure of the aldehyde bound to the catalyst. The C$_2$-symmetric bis(oxazolinyl)–Cu(II) complex [Cu((S,S)-tert-Bu-box)](OTf)$_2$ is also an efficient catalyst for the aldol reaction, but the scope with this system is not as broad.

Introduction

The development of a general enantioselective aldol addition reaction has been an enduring problem in organic chemistry for nearly 25 years. Seminal advances have been realized in the development of high levels of reaction diastereoselection, while improvements in chiral auxiliary design have led to the achievement of absolute stereochemical control for many of these reactions. Nevertheless, the broad extension of high levels of diastereoselectivity and enantioselectivity to catalytic aldol reactions has not been trivial. The most notable achievements that have been made in this area have focused on the addition of enolsilanes to aldehydes through catalysis by chiral Lewis acids (‘*‘M‘, eq 1). Excellent progress in the development of enantioselective “Mukaiyama” aldol variants has been made, however, no individual catalytic system developed to date tolerates substantial variation in both the nucleophilic and electrophilic components while maintaining low catalyst loading (<10 mol %). In part, the lack of structural data on many of the relevant catalyst–aldehyde complexes has inhibited further catalyst refinement. Indeed, some of the fundamental control elements for these reactions are just being revealed.

The realization of high enantioselectivity for the catalyzed aldol reaction necessarily relies on effective channeling of the reactants through a transition state that is substantially lower in energy than competing diastereomeric transition-states. For the process at hand, a high level of transition-state organization is required, necessitating control of factors that include (A) mode of binding (η^2 vs η^1) of the carbonyl group to the Lewis acid; (B) the regiochemistry of complexation to the two available C=O lone pairs; and (C) the establishment of a fixed diastereofacial bias, thereby biasing enol/enolate addition to one of the two carbonyl π-faces. The discovery of effective strategies for controlling the conformation of the Lewis acid–bound aldehyde lies at the heart of current advances in chiral catalyst design in this area. Recent investigations have sought to...

References:

incorporate additional stabilizing interactions such as hydrogen bonding, \(\pi \)-stacking, or chelation, incorporated individually or in concert, into the catalyst–aldehyde complex to provide a highly defined carbonyl facial bias (Scheme 1). The focal point of the present investigation has been to discover chiral metal complexes that exhibit a strong propensity toward substrate chelation while also meeting the other criteria necessary for their application to asymmetric catalysis of the aldol reaction.

Previous work from our laboratory has demonstrated that bidentate bis(oxazolyl) (box) (1 and 2)—Cu(II) and tridentate bis(oxazolyl)pyridine (pybox) (3 and 4)—Cu(II) complexes can function as effective chiral Lewis acid catalysts in the Diels–Alder reaction with substrates that can participate in catalyst chelation (Scheme 2, eq 2). Further studies revealed that these Cu(II) catalysts maintain excellent levels of reactivity over a range of diene substrates, attesting to the high Lewis acidity of these complexes.\(^5\)

The selectivity observed with both the Cu(II) box and pybox complexes suggested that these catalysts would also be promising candidates for the Mukaiyama aldol reaction with aldehyde substrates that could present the potential for catalyst chelation. Indeed, accumulated evidence has indicated that chelation is a critical control element in defining the catalyst–substrate architecture for the Diels–Alder reaction (Scheme 2, A and B).\(^6\) and we postulated that extrapolation of these models to include chelating aldehydes would furnish well-defined catalyst–substrate complexes (Scheme 3, C and D).

The theme of developing laboratory analogues of biosynthetic pathways,\(^7\) (benzyloxy)acetaldehyde\(^8\) was selected as the initial substrate to probe the utility of these Cu(II) complexes in the Mukaiyama aldol reaction (eq 3), since this aldehyde may be regarded as an equivalent to the acetate starter unit in polyacetate biosynthesis. Moreover, the benzyloxy moiety provides a convenient point for further elaboration of the resulting aldol adducts. In this article, we document the use of copper(II) complexes as effective enantioselective catalysts for the Mukaiyama aldol reaction, where the aldehyde component is activated through bidentate coordination, an organizational feature not common to chiral Lewis acids previously reported for this process;\(^10\) furthermore, we provide direct structural evidence to support the proposed model of stereochemical induction.

Preliminary Results

Bis(oxazoline) Ligand Survey. The (S,S)-bis(oxazolyl) copper complexes 1 and 2 were initially evaluated as catalysts in the addition of tert-butyl thiacetate trimethylsilylketene acetal\(^11\) to (benzyloxy)acetaldehyde (eq 6). The bis(oxazolyl) copper complexes \(\text{1a} - \text{d} \) were prepared by stirring a solution of the (S,S)-bisoxazoline ligand\(^5\) and Cu(OTf)\(_2\) (typically 10 mol %, \(\sim 0.03 \) M in catalyst) in CH\(_2\)Cl\(_2\) (25 °C, 3 h) as

previously described (eq 4). The cationic hexafluoroantimonate complex 2a was formed by halide abstraction from the preformed \([\text{Cu((S,S)-tert-Bu-box)}]\)Cl₂ complex (6) with AgSbF₆, followed by filtration through dry Celite (or a PTFE 0.45-µm filter) to remove the precipitated AgCl (eq 5).

Addition of (benzyloxy)acetaldehyde to a cooled solution (−78 °C) of the catalyst, followed by subsequent dropwise addition of the tert-butyl thioacetate-derived trimethylsilylketene acetal, afforded the protected \(\alpha\)-hydroxy ester (eq 6). Brief treatment of this silyl ether with 1 N HCl in THF produced the expected alcohol, the enantioselectivity of which was assayed by chiral HPLC (Daicel OD-H column). The absolute configuration of the adduct was established by comparison of the optical rotation with that in the literature. This ligand screen revealed that the phenylglycine (Ph-box, 1c)- and valine (i-Pr-box, 1b)-derived box complexes were poorly enantioselective catalysts (Table 1, entries 1 and 2, 9% ee); however, the CuOTf₂ complexes of both the phenylalanine (Bn-box, 1d) and tert-leucine (tert-Bu-box, 1a) bisoxazolines delivered the aldol adduct with high enantioselectivity (entries 3 and 4). Use of the corresponding hexafluoroantimonate complex \([\text{Cu((S,S)-tert-Bu-box)}](\text{SbF}_6)_2\) (2a), the optimal catalyst for the Diels–Alder reaction, afforded the (S) product with only modest enantioselectivity (Table 1, entry 5, ≤64% ee).

Addition of (benzyloxy)acetaldehyde to a cooled solution (−78 °C) of the catalyst, followed by subsequent dropwise addition of the tert-butyl thioacetate-derived trimethylsilylketene acetal, afforded the protected \(\alpha\)-hydroxy ester (eq 6). Brief treatment of this silyl ether with 1 N HCl in THF produced the expected alcohol, the enantioselectivity of which was assayed by chiral HPLC (Daicel OD-H column). The absolute configuration of the adduct was established by comparison of the optical rotation with that in the literature. This ligand screen revealed that the phenylglycine (Ph-box, 1c)- and valine (i-Pr-box, 1b)-derived box complexes were poorly enantioselective catalysts (Table 1, entries 1 and 2, 9% ee); however, the CuOTf₂ complexes of both the phenylalanine (Bn-box, 1d) and tert-leucine (tert-Bu-box, 1a) bisoxazolines delivered the aldol adduct with high enantioselectivity (entries 3 and 4). Use of the corresponding hexafluoroantimonate complex \([\text{Cu((S,S)-tert-Bu-box)}](\text{SbF}_6)_2\) (2a), the optimal catalyst for the Diels–Alder reaction, afforded the (S) product with only modest enantioselectivity (Table 1, entry 5, ≤64% ee).

Table 1. Effect of Ligand and Counterion in the Catalyzed Benzoxyoacetaldehyde Aldol Reaction (eq 6)

<table>
<thead>
<tr>
<th>Entry</th>
<th>R</th>
<th>X</th>
<th>Time (°C)</th>
<th>% ee</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Ph</td>
<td>OTf (1c)</td>
<td>15 min</td>
<td>9 (R)</td>
</tr>
<tr>
<td>2</td>
<td>CHMe₂</td>
<td>OTf (1b)</td>
<td>15 min</td>
<td>9 (S)</td>
</tr>
<tr>
<td>3</td>
<td>Bn</td>
<td>OTf (1a)</td>
<td>60 min</td>
<td>88 (R)</td>
</tr>
<tr>
<td>4</td>
<td>CMe₃</td>
<td>OTf (1a)</td>
<td>60 min</td>
<td>91 (R)</td>
</tr>
<tr>
<td>5</td>
<td>CMe₃</td>
<td>ShF₆ (2a)</td>
<td>15 min</td>
<td>≤64 (S)</td>
</tr>
</tbody>
</table>

*Enantiomeric excess determined by HPLC using a Chiralcel OD-H column. Absolute configuration determined by comparison of the optical rotation to literature values.

Pyridine(bisoxazoline) Ligand Survey. Dichloromethane solutions of the (S,S)-pybox ligands 8 were complexed with CuOTf₂ to form blue solutions of the chiral triflate complexes 3a–d (eq 7). Preparation of the cationic [Cu((S,S)-pybox)]-(SbF₆)₂ complexes 4a–d was accomplished by precomplexing the pybox ligand with CuCl₂ in CH₂Cl₂, followed by halide abstraction with AgSbF₆ and filtration to remove the precipitated AgCl (eq 8).

The [Cu((S,S)-pybox)](SbF₆)₂ complexes 4a–d also catalyze the addition of tert-butyl thioacetate trimethylsilylketene acetal to (benzyloxy)acetaldehyde (eq 9) with moderate to excellent enantioselectivity (Table 2, entries 1–5, 62–99% ee). The [Cu(Ph-pybox)](SbF₆)₂ complex (4c) was the most selective catalyst, delivering the \(\beta\)-hydroxy ester with excellent enantioselectivity within 15 min at −78 °C (entry 5, 99% ee). The analogous triflate complex 3c was also highly enantioselective, but as anticipated, the reaction was slower (entry 4, 96% ee).

Table 2. Effect of Ligand, Counterion and Temperature in the Catalyzed Benzoxyoacetaldehyde Aldol Reaction (eq 9)

<table>
<thead>
<tr>
<th>Entry</th>
<th>R</th>
<th>X</th>
<th>Time (°C)</th>
<th>% ee</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>CMe₃</td>
<td>ShF₆ (4a)</td>
<td>12 h (−78)</td>
<td>62</td>
</tr>
<tr>
<td>2</td>
<td>CHMe₂</td>
<td>ShF₆ (4b)</td>
<td>15 min (−78)</td>
<td>85</td>
</tr>
<tr>
<td>3</td>
<td>Bn</td>
<td>ShF₆ (4d)</td>
<td>15 min (−78)</td>
<td>67</td>
</tr>
<tr>
<td>4</td>
<td>Ph</td>
<td>OTf (3c)</td>
<td>60 min (−78)</td>
<td>96</td>
</tr>
<tr>
<td>5</td>
<td>Ph</td>
<td>ShF₆ (4c)</td>
<td>15 min (−78)</td>
<td>99</td>
</tr>
<tr>
<td>6</td>
<td>Ph</td>
<td>ShF₆ (4c)</td>
<td><50^b</td>
<td>87</td>
</tr>
<tr>
<td>7</td>
<td>Ph</td>
<td>ShF₆ (4c)</td>
<td><20^b</td>
<td>82</td>
</tr>
<tr>
<td>8</td>
<td>Ph</td>
<td>ShF₆ (4c)</td>
<td>0^b</td>
<td>78</td>
</tr>
</tbody>
</table>

*Enantiomeric excess determined by HPLC using a Chiralcel OD-H column. Absolute configuration determined by comparison of the optical rotation to literature values. ^bTime for complete reaction was not determined in temperature profile study.

Reaction Optimization. Due to the superior enantioselectivity exhibited by the [Cu((S,S)-Ph-pybox)](SbF₆)₂ complex (4c) (Table 2, entry 5), a study was initiated to explore the (benzyloxy)acetaldehyde aldol reaction parameters with this catalyst system. A survey of permissable solvents for this reaction was undertaken. Solutions of catalyst 4c in the indicated solvents were generated using the standard procedure. This survey (−20 °C, 10 mol % 4c) revealed that employment of solvents other than CH₂Cl₂ led to either a significant decline in enantioselectivity or no reaction (Table 3). The inferior results obtained in this solvent screen are likely due to the limited solubility of the [Cu((S,S)-Ph-pybox)](SbF₆)₂ complex (4c) in media other than CH₂Cl₂. An examination of the temperature profile of the [Cu(Ph-pybox)](SbF₆)₂-catalyzed aldol reaction

demonstrated that an increase in the reaction temperature is accompanied by a significant decrease in enantioselectivity (Table 2, entries 6–8). As these reactions are highly exothermic, careful temperature control is critical to the maintenance of high selectivity, especially when executing large-scale preparations (vide infra).

Table 3. Effect of Solvent in the Catalyzed Benzylxoyacetalddehyde Aldol Reaction (eq 10)

<table>
<thead>
<tr>
<th>entry</th>
<th>solvent</th>
<th>time</th>
<th>% ee</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>CHCl₃</td>
<td><15 min</td>
<td>82ₐ</td>
</tr>
<tr>
<td>2</td>
<td>CH₂Cl₂</td>
<td>10 min</td>
<td>38</td>
</tr>
<tr>
<td>3</td>
<td>CHCN</td>
<td>12 h</td>
<td>25</td>
</tr>
<tr>
<td>4</td>
<td>CH₃NO₂</td>
<td>24 h</td>
<td>NDₐ</td>
</tr>
<tr>
<td>5</td>
<td>THF</td>
<td>48 h</td>
<td>NR</td>
</tr>
</tbody>
</table>

ₐAt 78 °C, 99% ee was observed. ①Multiple products observed; enantioselectivity could not be determined.

The effect of transient amounts of water on catalyst performance was also evaluated. Hydration does not appear to significantly impact catalyst reactivity, as substitution of CuCl₂·2H₂O for CuCl₂ during catalyst preparation afforded [Cu((S,S)-Ph-pybox)][(SbF₆)₂] solutions with similar activity. Furthermore, solutions (0.125 M) of the catalyst 4c may be stored without loss of catalytic activity for up to 1 week at room temperature, after which time a crystalline solid begins to form. This precipitate has been characterized by X-ray crystallography to be the catalytically inactive 2:1 ligand: copper complex (vide infra). Catalyst loadings as low as 0.5 mol % may be employed in the aldol reaction (eq 9) using this standard [Cu((S,S)-Ph-pybox)][(SbF₆)₂] solution ([BnOCH₂CHO]₀ = 2.5 M). Further experiments demonstrated that the implementation of low catalyst loadings is feasible with other substrates as well, the acetate-derived nucleophiles being the most tolerant (vide infra).

Reaction Scope: [Cu((S,S)-Ph-pybox)][(SbF₆)₂] (4c). The scope of the nucleophilic component in the (benzylxoy)acetalddehyde aldol reaction with the catalyst 4c was initially investigated (Table 4). The silylketene acetals derived from tert-butylothioacetate, ethyl thioacetate, and ethyl acetate reacted with (benzylxoy)acetalddehyde in the presence of 0.5 mol % catalyst to afford the respective β-hydroxy esters with excellent enantioselectivity (entries 1–3, 98–99% ee). In a related series of reactions, acetatoacetate-derived enol derivatives were also evaluated (eqs 12 and 13). The dioxolinone derivative 15 underwent facile reaction with (benzylxoy)acetalddehyde, in the presence of 5 mol % 4c, to provide the corresponding adduct 11 in 92% ee and 94% yield (eq 12). Low catalyst loadings (0.5 mol %) could be employed with the more reactive Chan’s diene 17 as the nucleophile, to afford, after reduction with Me₂NBH(OAc)₃, the anti diol 13 (15:1 anti: syn) in 97% ee (eq 13).

In ongoing efforts to exploit the utility of these acetoacetate nucleophiles, the investigation of preparative scale versions of these reactions was undertaken. These studies revealed that the reactions employing the dioxolinone nucleophile (eq 12, 55 mmol) and Chan’s diene (eq 13, 40 mmol) were both problematic when conducted on a large scale (80–90% ee, 50–60% yield). However, subsequent optimization studies on the related reaction between (benzoxoy)acetalddehyde and 1,3-bis(trimethylsiloxy)-1-tert-butoxybuta-1,3-diene (14)19 catalyzed by [Cu(Ph-pybox)][(SbF₆)₂] (4c) established that preparative scale (35.5 mmol) reactions could be performed to deliver the corresponding product (as a mixture of keto–enol tautomers) with high selectivity under slightly modified reaction conditions (eq 14). Due to the exothermic nature of this Cu(II)-mediated aldol reaction, the optimal procedure required the slow addition of (benzoxoy)acetalddehyde to a −90 °C solution of the catalyst (2 mol %, 0.011 M) and diene (i.e., inverse addition). Desilylation under nonaqueous20 conditions (PPTS/MeOH) followed by flash chromatography reproducibly afforded good yields of the desired product (15)21 with excellent enantiomeric excess (eq 14, 99% ee, 85% yield). The major competing reaction under these Lewis acidic conditions is the trimerization of (benzoxoy)acetalddehyde, which can be kept under 15% using these conditions. The Ph-pybox ligand routinely recovered during chromatography (ca. 65%) was subsequently recrystallized (EtOAc) for reuse in these Cu(II) catalyzed aldol reactions.

Table 4. Catalyzed Benzoxoyacetalddehyde Aldol Reaction with Representative Acetate Silyketene Acetals (eq 13)

<table>
<thead>
<tr>
<th>entry</th>
<th>R</th>
<th>catalyst loading</th>
<th>time, h</th>
<th>% ee</th>
<th>yield</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>S'Bu</td>
<td>0.5 mol %</td>
<td>12–24</td>
<td>99</td>
<td>99</td>
</tr>
<tr>
<td>2</td>
<td>SEt</td>
<td>0.5 mol %</td>
<td>12</td>
<td>98</td>
<td>95</td>
</tr>
<tr>
<td>3</td>
<td>OEt</td>
<td>0.5 mol %</td>
<td>12</td>
<td>98</td>
<td>99ₐ</td>
</tr>
</tbody>
</table>

ₐAll reactions were 0.2 M in substrate. ①Enantiomeric excess determined by HPLC using a Chiralcel OD-H column. Absolute configuration determined by independent synthesis (see experimental). ①The silyl ether was cleaved with TBAF/THF to prevent retroaldol reaction.

Notes

(16) The catalytic enantioselective addition of this nucleophile to aldehydes has also recently been reported: Singer, R. A.; Carreira, E. M. J. Am. Chem. Soc. 1995, 117, 12360–12361.

(19) (a) Molander, G. A.; Cameron, K. O. J. Am. Chem. Soc. 1993, 115, 5, 830–846. (b) This diene was utilized to minimize overreduction to the triol which was observed during the synthesis of the corresponding methyl ester.

(20) The product is slightly soluble in water.

polyacetyl building blocks 16 and 17. Notably, a minor modification of the conditions developed by Beck et al. (see Experimental Section) afforded the syn adduct with excellent diastereoselectivity (>200:1 syn:anti).

Catalyzed Mukaiyama aldol processes are not generally highly diastereoselective, and reactions employing propionate nucleophiles frequently suffer from either low diastereoselectivity or poor reactivity. In contrast, the [Cu((S,S)-Ph-pybox)][SbF6]2-catalyzed aldol reaction with these nucleophiles affords the substituted adducts with high selectivity (Table 5). For example, the (Z) silylketene acetal of ethyl thiopropionate provided the syn addol adduct in excellent diastereo- and enantioselectivity (97:3 syn:anti, syn 97% ee, Table 5, entry 1). In contrast, the corresponding (E) propionate silylketene acetal proved to be an inferior substrate, requiring higher reaction temperature and giving lower conversion and selectivity (86:14 syn:anti, syn 85% ee, entry 2). The absolute and relative stereochemistries were confirmed by conversion of the known aldol product 18 to the syn adduct 19, which exhibited the expected opposite sign of optical rotation (eq 17).

The exact nature of the silyl component of the silylketene acetal was not critical, as the (Z)-propionate-derived tert-butyldimethylsilylketene acetal afforded similar selectivity (94:6 syn:anti, syn 96% ee, entry 3) in comparison to the trimethylsilyl analogue (97:3 syn:anti, syn 97% ee, entry 1). Thus, additional protecting group steps are obviated as this manipulation can be merged with the copper-catalyzed Mukaiyama aldol reaction to provide β-hydroxy carbonyl products with an intact, synthetically useful silyl ether protecting group. The use of silylketene acetals with larger alkyl substituents is also permitted, as evidenced by the production of the isobutyl-substituted adduct (eq 17, R1 = Bu) with high diastereo- and enantioselectivity and good yield (Table 5, entry 4, 95:5 syn:anti, 95% ee, 85%).

While tert-butyldimethylsilylketene acetal could also be employed, the results were not as favorable as those obtained with ethyl thioester-derived nucleophiles (Table 5, entry 1 vs entries 5–7). Regardless of the precise nature of the ester substituent, the best selectivity and reactivity for the substituted silylketene acetals were obtained when the alkyl and OTMS moieties were disposed in an anti orientation about the silylketene acetal double bond. This geometric requirement was also evident in the analogous reaction of the butyrolactone silylketene acetal, which afforded a highly selective syn aldol reaction with good control at both stereogenic centers (eq 19).

(22) We have also carried out the same sequence of reactions (eqs 14–16) employing (4-methoxybenzoyl)acetaldehyde with similar yields and selectivities.

tages. These latent nucleophiles are easily prepared and more stable than the corresponding ester derivatives, which undergo rapid hydrolysis. In addition, the thioester moiety in the resultant adducts can be readily converted to an acid, amide, or ester using either a silver-based reagent or a bromination/displacement procedure. Alternatively, the Fukuyama reduction procedure (Pd/C, Et₃SiH) can be implemented to reduce thioesters to aldehydes.

The less reactive ketone enolsilane nucleophiles may also be utilized in the catalyzed additions to benzaldehyde (Table 6). The reactions of 2-(trimethylsilyl)propane and 1-phenyl-1-(trimethylsilyloxy)ethene with (benzyloxy)acetaldheyde proceeded poorly at 10 mol % catalyst loading (≤56% ee); however, high enantioselectivity and yields were realized upon employment of stoichiometric quantities of the catalyst (≥94% ee; Table 6, entries 1 and 2).

Table 6. Catalyzed Benzaldehyde Aldol Reaction with Representative Enolsilanes (eq 21)

<table>
<thead>
<tr>
<th>entry</th>
<th>R¹</th>
<th>R²</th>
<th>catalyst</th>
<th>loading time (°C) syn:anti % ee</th>
<th>% yield</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>H</td>
<td>Me</td>
<td>100 mol</td>
<td>1 d (79)</td>
<td>98</td>
</tr>
<tr>
<td>2</td>
<td>H</td>
<td>Ph</td>
<td>100 mol</td>
<td>1 d (79)</td>
<td>94</td>
</tr>
<tr>
<td>3</td>
<td>Me</td>
<td>Pb</td>
<td>10 mol</td>
<td>2 d (20)</td>
<td>95.5</td>
</tr>
<tr>
<td>4</td>
<td>Me</td>
<td>Pb</td>
<td>10 mol</td>
<td>2 d (20)</td>
<td>38.62</td>
</tr>
<tr>
<td>5</td>
<td>CH₃</td>
<td></td>
<td>10 mol</td>
<td>14 h (78)</td>
<td>97.3</td>
</tr>
</tbody>
</table>

All reactions were 0.2 M in substrate. Product ratios determined by chiral HPLC. Absolute and relative configuration determined by independent synthesis (see Experimental). Enantiomeric excess of the major product determined 15% syn ee observed.

The more nucleophilic substituted enolsilanes were found to be superior substrates in these reactions as compared to their unsubstituted counterparts (Table 6, entries 3—5). For example, the reaction of the (E) enolsilane of 2-methyl-3-pentanone proceeded to complete conversion in the presence of 10 mol % of the copper catalyst 4c to afford the corresponding adduct with 95:5 syn:anti selectivity and 90% ee. As anticipated (vide supra), the analogous (Z) enolsilane was less reactive and less enantioselective (entry 3 vs 4). The successful implementation of 1-(trimethylsilyloxy)cyclopentene demonstrates that cyclic enolsilanes are also excellent nucleophiles in the (benzyloxy)acetaldheyde aldol reaction (entry 5, 97:3 syn:anti, 96% ee).

Reaction Scope: [Cu((S,S)-tert-Bu-box)(OTf)₂] (1a). Examination of the scope of the nucleophilic component in the additions to benzaldehyde catalyzed by 1a was next undertaken (Table 7). The thioester silylketene acetal (entry 1, 91% ee) afforded significantly higher selectivity than to the ester derivative (entry 2, 50% ee). Additionally, the use of enolsilane nucleophiles resulted in the formation of the aldol adducts with diminished selectivity (entries 3 and 4). These results clearly indicate that the [Cu((S,S)-Ph-pybox)(SbF₆)₂] complex (4c) is the preferred catalyst for acetate aldol reactions with (benzyloxy)acetaldheyde.

Investigation into the use of propionate nucleophiles with the [Cu((tert-Bu-box)(OTf)₂ catalyst system 1a revealed that the addition of tert-butyl thiopropionate trimethylsilylketene acetal to benzaldehyde proceeded with anti diastereoselectivity (eq 23, 81:19 anti:syn, 84% anti ee). Although the yield for this reaction (50%) is not preparatively useful, it serves to illustrate that diastereoselection is not simply inherent to the nature of the process but is a consequence of an array of factors, among the most important of which is the geometry of the substrate–catalyst complex (vide infra). Further studies are required in order to define the origin of this reversal in selectivity.

Reaction Mechanism. The proposed catalytic cycle for the Cu(II)-catalyzed aldol reaction is outlined in Scheme 4. Coordination of (benzaldehyde)acetaldheyde to the Cu(II) center produces the substrate–catalyst complex 23, which undergoes nucleophilic addition to afford the copper aldolate 24. Silylation to form 25 and subsequent decomplexation yields the product 25a and concomitantly regenerates the [Cu((S,S)-Ph-pybox)-]–(SbF₆)₂ catalyst (4c).

Scheme 4
Silyl Crossover Experiments. It is evident that silicon transfer from the initially formed catalyst—Nu—RCHO complex 24 may proceed via an intramolecular or intermolecular process (Scheme 4, 24 → 25). It has been reported that intermolecular silyl transfer, for example either to counterion (SbF6− or OTf−) or to unreacted aldehyde, may trigger an achiral catalyzed process that may compete with the enantioselective variant.32 The details associated with silicon transfer were investigated in the present system by employing a mixture of two different silylketene acetals of comparable reactivities (Scheme 5).4c

Treatment of 0.5 equiv of each of the depicted silylketene acetals with 1.0 equiv of (benzyloxy)acetaldehyde and 10 mol % of [Cu(Ph-pybox)][SbF6]2 (4c) afforded significant quantities of the four possible products, as detected by GC/MS analysis. Deprotection of the silyl ethers and chiral HPLC analysis of the derived alcohols indicated that both aldol adducts were essentially enantioselectively pure (99% ee). Although there is clearly a large intermolecular silyl-transfer component in the reaction, the transient silyl species33 apparently does not compete effectively at −78 °C with the biscaticonic copper catalyst in this aldol reaction. Control experiments demonstrated that neither the silylketene acetals nor the silyl ether products are subject to silyl exchange initiated by the catalyst, indicating that silyl crossover occurs during the course of the reaction.

Nonlinear Effects. Nonlinear effects (NLE) can provide useful insight into both the behavior of enantioselective catalyst systems and the mechanisms of the processes they mediate.34,35 Consequently, experiments were performed to determine if NLE were operative in the Cu(II) pybox-catalyzed aldol reaction under investigation. Indeed, when the aldol reaction was conducted with the catalyst [Cu(Ph-pybox)][SbF6]2 (10 mol %) prepared according to the general procedure with ligand of reduced enantiomeric excess (eq 24), a strong positive nonlinear effect was observed (Figure 1). For example, employment of a catalyst of 25% ee afforded the aldol adduct in 74% ee. To rationalize this significant NLE, we propose that catalyst disproportionation is occurring under the conditions for catalyst preparation (eq 26, CH2Cl2, 20 °C, 4 h). The formation of a stable [Cu((S,S)-Ph-pybox)((R,R)-Ph-pybox)][SbF6]2 2:1 ligand:metal complex (26) is postulated, serving as a catalytically inactive reservoir for the minor (R,R)-Ph-pybox ligand and consequently enriching the enantiomeric excess of the remaining

species. Plausible fates of the released Cu(II) include the formation of
[Cu(SbF$_6$)$_2$]37 or a non-Lewis acidic species such as CuO or Cu(OH)$_2$.

Several control experiments were performed to provide support for the NLE proposal. Independent generation of the 2:1 ligand:copper complex using our standard catalyst preparation procedure afforded a material that was nearly completely insoluble in the reaction solvent.38 Subjection of this solution to the (benzylxoy)acetaldelyde aldol reaction revealed that the 2:1 ligand:copper complex was not a catalytically competent species ($-78\, ^\circ\mathrm{C}$, 2 d, 9% yield vs 4c, $-78\, ^\circ\mathrm{C}$, 15 min, 99% yield). This result, buttressed by the fact that as little as 0.5 mol % of the catalyst 4c is capable of effecting the reaction within 24 h at $-78\, ^\circ\mathrm{C}$ (Table 4), also serves to demonstrate that once the 2:1 ligand:metal complex is formed, it is not in an appreciable equilibrium with catalyst 4c. Furthermore, the addition of 1 equiv of (R,R)-Ph-pybox ligand to a stock solution of [Cu((S,S)-Ph-pybox)](SbF$_6$)$_2$ (4c) caused the immediate (\leq30 s) precipitation of a pale blue amorphous material (presumably the 2:1 complex) and a clear colorless solution,39 indicating that the formation of the insoluble 2:1 (S,S)\rightarrow(R,R) ligand metal-complex 6 is a facile process at room temperature.

To delineate the course of ligand exchange and the relative stabilities of the (S,S)\rightarrow(R,R) and (S,S)\rightarrow(S,S) 2:1 ligand:metal complexes, a catalyst preparation was undertaken using excess ligand relative to copper (eq 27). The use of 30 mol % of 2:1

\[
\text{(S,S)-(R,R) ligand (33% ee) and 20 mol % Cu(SbF$_6$)$_2$ (i.e., 20 mol % CuCl$_2$ and 40 mol % AgSbF$_6$) should, ideally, produce 10 mol % of the [Cu((S,S)-Ph-pybox)((R,R)-Ph-pybox)](SbF$_6$)$_2$ complex (26) and 10 mol % of enantiomerically enriched [Cu-((S,S)-Ph-pybox)](SbF$_6$)$_2$ (4c) (catalyst A). Employment of this catalyst solution}40 in the reaction of (benzylxoy)acetaldelyde with tert-butyl thioacetate silylketene acetal provided the aldol product in 83% ee within 15 min at $-78\, ^\circ\mathrm{C}$ (eq 28). Although the enantioselectivity of this reaction did not approach the selectivity obtained in the reaction catalyzed by enantiomerically pure 4c (99% ee, 15 min, $-78\, ^\circ\mathrm{C}$), it did surpass the enantioselectivity observed in the NLE experiment (e.g., 50% ee ligand \rightarrow 84% ee product, Figure 1). Thus, this experiment illustrates both that enrichment of the ligand is being achieved through the formation of the [Cu((S,S)-Ph-pybox)((R,R)-Ph-pybox)](SbF$_6$)$_2$ complex (26) and that this species is favored relative to the (S,S)\rightarrow(S,S) 2:1 ligand:metal complex.

Ultimate corroboration for the formation of a catalytically inactive 2:1 ligand:metal complex was obtained through the X-ray crystal structural determination of both the [Cu((S,S)-Ph-pybox)((R,R)-Ph-pybox)](SbF$_6$)$_2$ (26) and [Cu((S,S)-Ph-pybox)$_2$](SbF$_6$)$_2$ (27) complexes (Figure 2). By inspection, the (S,S)\rightarrow(R,R) complex 26 appears favored relative to (S,S)\rightarrow(S,S) complex 27, as the ligand phenyl groups project unobstructed into each of the four quadrants. In comparison, in 27 the phenyl groups of the ligands protrude into the same two quadrants.

Semiempirical calculations (PM3) qualitatively validated this analysis, as the heat of formation of the (S,S)\rightarrow(R,R) complex 26 was found to be 2.9 kcal/mol lower in energy than that of the (S,S)\rightarrow(S,S) complex 27.

Catalyst Characterization and Stereochemical Models:

[Cu(Ph-pybox)](SbF$_6$)$_2$. The proposed requirement for catalysis in the [Cu((S,S)-Ph-pybox)](SbF$_6$)$_2$ (4c)-mediated (benzylxoy)-
Acetaldehyde aldol reaction requires the intermediacy of a five-coordinate Cu(II) catalyst—substrate complex.\(^{41,42} \) Several five-coordinate [Cu(pybox)]\(\text{SbF}_6 \) complexes were synthesized with the intent of obtaining crystal structures that might elucidate the basic coordination geometry (i.e., trigonal bipyramidal or square pyramidal)\(^{43} \) of these complexes, thus providing a basis upon which to construct a stereochemical model of the catalyst—substrate complex. Due to the highly crystalline nature of the bis(hydrate), [Cu(i-Pr-pybox)(H\(_2\)O)\(_2 \text{SbF}_6 \)] \(^{28} \) was selected as the initial substrate from which to extraplate geometrical information on pentacoordinate Cu(II) complexes. Efforts were also directed toward obtaining crystals of chelated pentacoordinated [Cu(pybox)]\(^{2+} \) complexes to model this reaction, in which the catalyst—substrate complex is similarly organized. In this context, we also obtained an X-ray structure of the analogous dimethoxyethane (DME) complex \(^{29} \) (Figure 3). Both the bis(hydrate) and the DME complexes \(^{28} \) and \(^{29} \) adopt a square pyramidal geometry, with the Sb\(\text{F}_6 \) counterions fully dissociated from the metal center (Figure 3). A useful measure of distortion from the ideal square pyramidal geometry is the \(\text{N}_1\text{(pyridyl)}\)–Cu–O\(_3\) (equat) bond angle, which by definition is \(180^\circ \) for an undistorted complex. For the DME complex \(^{29} \), this measure of distortion \((\text{N}_1\text{–Cu}_1\text{–O}_3 = 156.4^\circ) \) is somewhat greater than the corresponding measurement in the bis(hydrate) complex \(^{28} \) \((\text{N}_1\text{–Cu}_1\text{–O}_3 = 159.0^\circ) \).

As a consequence of the electronic configuration of the Cu(II) center (\(d^9 \)) and accompanying Jahn–Teller distortion, the square pyramidal geometry affords a strong coordinating site in the ligand plane, with a weaker coordination site in the axial position.\(^{42} \) In accord with this expectation, the more tightly bound oxygen heteroatoms in \(^{28} \) and \(^{29} \) are found in the equatorial plane \((\text{Cu}_1\text{–OR}_2 = 1.985 \, \text{Å}; \text{Cu}_2\text{–OR}_2 = 2.203 \, \text{Å}) \). From these data, it is reasonable to conclude that the Cu–O bond lengths in \(^{29} \) provide a direct measure of the inherent Lewis acidity of the two nonequivalent catalyst binding sites.

Based upon the preceding structural data, the trigonal bipyramidal complex \(^{30} \) was considered unlikely; furthermore, this structure predicts the incorrect stereochemical outcome for the (benzyloxy)acetaldehyde aldol reaction (Scheme 6). For the square pyramidal copper geometry, two diastereomeric catalyst—substrate complexes \(^{31a} \) and \(^{31b} \) must be considered in the analysis of the impact of catalyst structure on reaction stereochemistry. As documented in the [Cu(pybox)]\(^{2+} \) system by the X-ray crystal structures \(^{28} \) and \(^{29} \), the square pyramidal geometry affords a strong coordinating site in the ligand plane, with a weaker coordination site in the axial position. As a consequence, for maximal carbonyl activation, aldehyde coordination is postulated to occur in the equatorial plane, as illustrated in complex \(^{31a} \). Accordingly, the catalyst—substrate complex \(^{31a} \), successfully predicts the stereochemical outcome of the (benzyloxy)acetaldehyde aldol reaction, and the diastereomeric square pyramidal complex \(^{31b} \) predicts the wrong absolute stereochemistry. The high enantioselectivity observed

\(^{41} \) The weakly coordinating Sb\(\text{F}_6 \) counterions are presumed to not associate directly with the Cu(II) center. Considerable structural data support this assertion (vide infra).

in these reactions (≥95% ee) provides strong support for the assertion that only one of the two complexes, i.e., \(31a\), is catalytically competent.

Ultimately, we were successful in obtaining deep blue crystals of the catalyst–substrate \([\text{Cu}((S,S)-\text{Ph-pybox})(\text{BnOCH}_2\text{CHO})-\text{(SbF}_6)\text{]}\) complex (32). The X-ray structure reveals that the copper geometry is square pyramidal, with the carbonyl oxygen coordinated to the equatorial site in the ligand plane and the ether oxygen occupying an apical site (Figure 4). As expected, the carbonyl oxygen occupies the more Lewis acidic site as evidenced by the much shorter aldehyde–Cu bond length \((\text{Cu1-O3}) = 1.986 \text{ Å}\) relative to the benzyl ether–Cu bond length \((\text{Cu1-O4}) = 2.328 \text{ Å}\). This complex exhibits a minimal amount of distortion from an ideal square pyramidal geometry, as evidenced by the \(N1(\text{pyridyl})–\text{Cu–O3(equat)}\) bond angle of 169.0°. In direct accord with our prediction, it is evident from this structure that the re face of the aldehyde carbonyl is completely shielded by the Ph substituent on the ligand.

Further inspection of the \([\text{Cu}((S,S)-\text{Ph-pybox})(\text{BnOCH}_2\text{CHO})-\text{(SbF}_6)\text{]}\) X-ray structure (32) reveals that the phenyl group of the (benzyloxy)acetaldehyde substrate is oriented under the pyridine ring of the pybox ligand (~3.5 Å) in a parallel fashion (Figure 4). This geometrical arrangement and distance are consistent with a parallel offset face-to-face \(\pi–\pi\) interaction between the phenyl and pyridyl moieties.44 Experiments were designed to counter the possibility that the observed orientation is solely a consequence of crystal packing and of no relevance to the actual solution behavior. Upon substitution of the benzyloxy group of the substrate with an alkyl group, as in \((n\text{-butyloxy})\)-acetaldehyde, a significant reduction in enantioselectivity was observed (eq 29, 99 → 88% ee, \(\Delta G^\circ \approx 1 \text{ kcal/mol at } -78 \text{ °C}\)). When the ary1 group was reinstalled, as in \((4\text{-methoxy-})\)-benzyloxyacetaldehyde, the enantioselection was restored to 99% ee (eq 29). These experiments suggest that this \(\pi–\pi\) interaction plays an important organizational role in the assembly of the catalyst–substrate complex.45

When the \([\text{Cu}((S,S)-\text{Ph-pybox})(\text{BnOCH}_2\text{CHO})-\text{(SbF}_6)\text{]}\) crystals (32) were redissolved in CH\(_2\)Cl\(_2\) and treated with the silylketene acetal derived from tert-butyl thioacetate under the usual reaction conditions (eq 30), the aldol adduct was obtained in 99% ee (1 h, -78 °C), the same value as obtained for the catalyzed reaction. This experiment provides strong evidence that the catalyst–aldehyde complex (32) isolated and characterized is also the catalytically relevant species in solution.

Evidence for Chelation. The selection of (benzyloxy)-acetaldehyde as the aldol reaction substrate was predicated upon the proposed ability of this aldehyde to engage in bidentate

\[\text{R} + \text{HCHO} \rightarrow \text{RCH(OH)}\text{CHO} \rightarrow \text{RCHO} + \text{H}_2\text{O}\]

coordination to the Cu(II)-center. Support for dynamic substrate chelation was acquired when \(\alpha\)-(tert-butyl(dimethyl)silyloxy)acetaldehyde, an aldehyde which is expected to be an ineffective chelator, was implemented in the Cu(II)-catalyzed aldol reaction: the use of this aldehyde led to a less enantioselective process (eq 31, 56% ee) as compared to (benzyloxy)acetaldheyde (99% ee). Furthermore, hydrocinnamaldehyde, a monodentate substrate incapable of chelation, afforded a racemic product when employed in this reaction (eq 31). Based upon these results, catalyst—substrate chelation appears to be an absolute requirement for obtaining high enantioselectivity in this process.

Double stereodifferentiating experiments with (R)- and (S)-\(\alpha\)-(benzyloxy)propionaldehyde have also been carried out to provide support for the square pyramidal catalyst—substrate model 31a described in Scheme 6. Gennari and Cozzi have shown that the SnCl2-mediated addition of the silylketene acetal derived from tert-butylthioacetate to \(\alpha\)-(benzyloxy)propionaldehyde provides the chelation-controlled adduct with high selectivity (98:2). Reaction of (R)-\(\alpha\)-(benzyloxy)propionaldehyde catalyzed by \([\text{Cu(Ph-pybox)}](\text{SbF}_6)_{2}\) afforded an unselective, slow reaction (Scheme 7, mismatched). This result is consistent with catalyst—substrate square pyramidal coordination, where the substrate (Me) and ligand (Ph) substituents mask opposite aldehyde carbonyl enantiofaces (Scheme 8, 33a). In the matched case, (S)-\(\alpha\)-(benzyloxy)propionaldehyde underwent a rapid reaction, providing a 98.5:1.5 mixture of diastereomers, favoring the chelation-controlled product (Scheme 7). In the square pyramidal complex (Scheme 8, 33b), the \(\alpha\)-methyl substituent of (S)-\(\alpha\)-(benzyloxy)propionaldehyde reinforces the facial bias imposed by the catalyst.

A corollary to these experiments is that (R)-\(\alpha\)-(benzyloxy)propionaldehyde would be anticipated to act as a catalyst inhibitor on the basis of the observation that this enantiomer ideally complements the catalyst by orienting a Me group in the only open quadrant available in complex 33a (Scheme 8).

Indeed, this has been shown to be the case, as demonstrated by the low reactivity of (R)-\(\alpha\)-(benzyloxy)propionaldehyde. While the manifestation of matched and mismatched reaction partners is consistent with all the models, both the diastereomeric square pyramidal model 34 and the trigonal bipyramidal model 35 would predict the opposite matched and mismatched relationships relative to those observed (Scheme 8); moreover, the results of these double stereodifferentiating experiments are in full accord with the proposal that (benzyloxy)acetaldheyde coordinates to the Cu(II) center in a bidentate fashion.

Solution-State Characterization. To establish a correlation between the accumulated solid-state structural data and the solution behavior, the catalyst—substrate species were probed using a combination of electrospray ionization mass spectrometry (ESI) and electron paramagnetic resonance (EPR) spectroscopy. Significantly, the ESI spectrum of \([\text{Cu(Ph-pybox)}]\(\text{Sn(OC}2\text{H}2\text{CHO})\](\text{SbF}_6)_{2}\) clearly affirmed the presence of a doubly charged catalyst—substrate complex, \([\text{Cu(Ph-pybox)}]\(\text{Sn(OC}2\text{H}2\text{CHO})\](\text{SbF}_6)_{2}\), in solution without any associated couunters (see Supporting Information). Additionally, the EPR spectra of the \([\text{Cu(i-Pr-pybox)(H}_2\text{O})_2]\(\text{SbF}_6)_{2}\) (28), \([\text{Cu(i-Pr-pybox)}]\(\text{Sn(OC}2\text{H}2\text{CHO})\](\text{SbF}_6)_{2}\) (29), and \([\text{Cu(Ph-pybox)(Sn(OC}2\text{H}2\text{CHO})}\](\text{SbF}_6)_{2}\) (32) complexes exhibited well-defined square pyramidal copper centers, in direct accord with the corresponding crystal structures (see Supporting Information). The ratio of \(g_{//}/g_{\perp}\) is indicative of distortion away from square pyramidalization; a value of 126 \(\times 10^{4}\) for 32 is consistent with negligible amounts of distortion. The above solid- and solution-state data together provide compelling evidence for the presence of complex 31a (Scheme 6) in the reactions of (benzyloxy)acetalddehyde employing the \([\text{Cu(Ph-pybox)}]\(\text{SbF}_6)_{2}\) catalyst (4e).

Diastereoselectivity Models. The majority of the diastereoselective (benzyloxy)acetalddehyde aldol reactions encountered in this study afford the syn adducts. This syn selectivity can be rationalized by attack of the silylketene acetal on the proposed square pyramidal Cu(II)—aldehyde complex 31a via an open transition state, which minimizes the number of repulsive gauche and dipole—dipole interactions (Scheme 9, the shielding Ph—ligand group has been omitted for clarity). Of the three:

\(48\) The square pyramidal nature of the \([\text{Cu(Ph-pybox)}]\(\text{Sn(OC}2\text{H}2\text{CHO})\](\text{SbF}_6)_{2}\) spectrum was verified by comparison with the EPR spectra of compounds known to possess square pyramidal copper centers: (a) Reference 42a, p 662. (b) Batra, G.; Mathur, P. *Transition Met. Chem.* 1995, 20, 26–29.

\(49\) In addition, the simulated spectrum of \([\text{Cu(Ph-pybox)(Sn(OC}2\text{H}2\text{CHO})}\](\text{SbF}_6)_{2}\) closely matched the experimental spectrum (see Supporting Information) when the following simulation parameters were employed: \(g_1 = g_2 = 1.9368, g_3 = 2.3300; A = 152.92 G, LB = 100 G.\)

possible transition states that lead to the observed syn product, antiperiplanar transition state 36 has the fewest destabilizing interactions. By comparison, the antiperiplanar transition state 37, which would afford the anti product, incurs both Me-(nucleophile) ↔ CH₂(aldehyde) and Me(nucleophile) ↔ catalyst gauche interactions.

The anti diastereoselectivity observed in the aldol addition of 2-(trimethylsiloxy)furan to (benzzyloxy)acetaldehyde (eq 20) may be rationalized through a similar analysis. Inspection of each of the acyclic transition states leads to the conclusion that 38 and 39 are preferred on steric grounds (Scheme 10). Further examination reveals that the synclinal transition state 39 is favored relative to the antiperiplanar transition state 38 due to the electrostatic repulsion between the (benzzyloxy)acetaldehyde carbonyl oxygen and the furan oxygen.24

Catalyst Characterization and Stereochemical Models: [Cu(tert-Bu-box)](OTf)₂. Prior work from this laboratory⁶ has provided the precedent that the [Cu((S,S)-tert-Bu-box)](OTf)₂ and [Cu(tert-Bu-box)](SbF₆)₂ complexes 1a and 2a also have the potential to chelate with (benzzyloxy)acetaldehyde. The relevant complexes of this substrate with 1 and 2 are illustrated below (Scheme 11). In the absence of counterion participation, complex 40 affords an unequivocal prediction that the stereochemical outcome of the reaction should afford the illustrated (S) aldol adduct. If the counterion is an integral part of the aldehyde−catalyst complex, as in 41, the stereochemical outcome of the reaction is more ambiguous, since aldehyde chelation could occur from either equatorial−equatorial or equatorial−apical (pictured) complexes.

The data provided below (eq 32) reveal that complex 40 does predict the sense of asymmetric induction when the box−Cu-(SbF₆)₂ complex 2a is employed but that the opposite sense of induction is observed when the analogous box−Cu(OTf)₂ complex 1a is employed. We thus conclude that, with the current reaction, the triflate counterion remains associated with the metal complex during the catalytic event. This result stands in contrast to the analogous aldol reactions with pyruvate esters, where both 1a and 2a afford the same sense of asymmetric induction.³¹ It is also noteworthy that the SbF₆-derived complex 2a is less enantioselective than its triflate counterpart. One might speculate that 2a is too Lewis acidic for this substrate to allow a highly selective process to occur.

Methodology Limitations

As demonstrated previously, a chelating substrate is necessary to achieve high enantioselectivity in the [Cu((S,S)-Ph-pybox)]−(SbF₆)₂ (4c) catalyzed Mukaiyama aldol reaction (eq 33); moreover, there are strict requirements on the nature of the chelating substituent (Table 8). Replacement of the benzzyloxy with a benzylthio group, as in (benzylthio)acetaldehyde, resulted in a decline in enantioselection from 99% to 36% ee. Furthermore, alteration of the tether length can have a dramatic impact, as evidenced by the complete loss of enantioselectivity when an additional methylene unit was inserted (β-(benzzyloxy)-propionaldehyde). Simple stereochemical models suggest that the five-membered chelate with benzzyloxyacetaldehyde readily complements the ligand pocket available in [Cu(Ph-pybox)]−(SbF₆)₂, whereas the six-membered chelate for β-(benzzyloxy)propionaldehyde adopts a chair or twist-boat conformation, which undergoes significant steric interactions with the pybox ligand framework. The complete lack of selectivity obtained with substrates which, presumably, would attain chelation geometries similar to that of (benzzyloxy)acetaldehyde, such as ethyl glyoxylate, is not easily rationalized.

Conclusion

In conclusion, efficient catalytic enantioselective Mukaiyama aldol additions to (benzyloxy)acetaldehyde utilizing the C2-symmetric bis(oxazolinyl)pyridine–Cu(II) complex [Cu((S,S)-Ph-pybox)-(SbF6)2] (4c) have been documented. A wide range of silylketene acetal and enolsilane nucleophiles can be employed, utilizing 0.5–10 mol % catalyst loadings, to provide the aldol products in good yield and with high selectivity (eq 34).

Investigation into the reaction mechanism utilizing doubly labeled silylketene acetal indicated that there is a significant intermolecular component to silyl transfer; however, any transient silyl species does not effectively compete with the chiral copper catalyst 4c at −78 °C. Further mechanistic studies revealed a significant positive nonlinear effect, proposed to arise from the selective formation of the stable [Cu((S,S)-Ph-pybox)-((R,R)-Ph-pybox)](SbF6)2:2:1 ligand:metal complex (26). A stereochemical model, 31a, is proposed in which chelation of (benzyloxy)acetaldehyde to the metal center to form a square pyramidal copper intermediate accounts for the observed sense of induction. Support for this proposal has been gained from double stereodifferentiating reactions, EPR spectroscopy, ESI spectrometry, and, ultimately, the X-ray crystal structure 32 of the aldehyde bound to catalyst.52

Experimental Section

General Procedure for the Preparation of Ketene Acetals. The thioester (1 equiv) was added to a cold (−78 °C) 0.4 M solution of lithium disopropylamide (1.2 equiv) in THF and stirred for 1 h before the addition of chlorotrimethylsilane (1.1 equiv). The reaction mixture was warmed to ambient temperature over a 4-h period, diluted with pentane, washed with phosphate buffer (pH = 7) and 0.5 M aqueous CuSO4, and dried (Na2SO4). Removal of the solvent and distillation of the crude liquid under reduced pressure afforded the desired ketene thioacetal.54

<table>
<thead>
<tr>
<th>Table 8. Scope of the Electrophilic Component in the Catalyzed Aldol Reaction (eq 34)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Substrate</td>
</tr>
<tr>
<td>R = Ph, CH(Me)2</td>
</tr>
<tr>
<td>R = Ph, CH(Me)2</td>
</tr>
<tr>
<td>R = Ph, CH(Me)2</td>
</tr>
</tbody>
</table>

General Procedure for the Preparation of (Z)-Ketene Thioacetals. The Collum procedure55 was employed for the synthesis of this family of ketene acetals. As a general precaution, freshly dried/distilled reagents were used in order to attain the highest levels of stereoselectivity (>95:5). A chilled (0 °C) slurry of TMP-HBr (1.3 equiv, 0.09 M in THF) was treated with n-BuLi (2.4 equiv, 1.6 M in hexanes), stirred for 5 min, and cooled to −78 °C. A solution of the thioester (1.0 equiv, 0.5 M in THF) was cannulated into the light yellow solution and stirred for an additional 30 min. Chlorotrimethylsilane (2 equiv) and triethylamine (0.5 equiv) were added, and the solution was warmed to 0 °C over a 4-h period before being diluted with pentane and washed with phosphate buffer (pH = 7) and 0.5 M aqueous CuSO4. The organic layer was dried (Na2SO4), concentrated, and distilled under vacuum to furnish the title compounds.

General Procedure for the Preparation of (E)-Ketene Thioacetals. The Ireland procedure56 was employed for the synthesis of this family of ketene acetals. As a general precaution, freshly dried/distilled reagents were used in order to attain the highest levels of stereoselectivity (>95:5). A solution of LDA (1 equiv) and HMPA (23% v/v) was stirred for 10 min prior to cooling (−78 °C) and treatment with the thioester (1.1 equiv). The solution was stirred for 15 min, treated with chlorotrimethylsilane (1 equiv), and warmed slowly to 0 °C. The reaction was diluted with pentane, washed with phosphate buffer (pH = 7) and 0.5 M CuSO4, and dried (Na2SO4) prior to concentration under reduced pressure. The unpurified product was distilled under vacuum to furnish the title compounds.

Preparation of [Cu((S,S)-Phenyl-bis(oxazolino)pyridine)](SbF6)2 (4c). To an oven-dried round-bottom flask containing a magnetic stirring bar were added, in a nitrogen atmosphere box, (S,S)-bis(phenyl oxazolinyl)pyridine (18.5 mg, 0.05 mmol) and CuCl2 (6.7 mg, 0.05 mmol). To an oven-dried round-bottom flask containing a magnetic stirring bar was added, in a nitrogen atmosphere box, AgSbF6 (34.4 mg, 0.10 mmol). The flasks were fitted with serum caps and removed from the nitrogen atmosphere box, and the flask containing the ligand/CuCl2 mixture was charged with CH3Cl (1.0 mL). The resulting suspension was stirred rapidly for 1 h to give a fluorescent green suspension. AgSbF6 (in 0.5 mL CH3Cl2) was added via cannula with vigorous stirring, followed by a 0.5-mL CH3Cl2 rinse. The resulting mixture was stirred rapidly for 3 h in the absence of light and filtered through an oven-dried glass pipet tightly packed with cotton (or alternatively an oven-dried 0.45-μm PTFE filter) to remove the white AgCl precipitate, yielding active catalyst [Cu(Ph-pybox)](SbF6)2 as a clear blue solution.

General Procedure for the Catalyzed Addition of Silylketene Acetals to Benzyloxyacetaldehyde Using [CuPh-pybox][SbF6]2 (4c). To a −78 °C solution of [CuPh-pybox][SbF6]2 in CH3Cl2 which was prepared as described above was added benzyloxyacetaldehyde (70.0 μL, 0.50 mmol) and CH3Cl2 (7.7 mg, 0.05 mmol). The mixture was stirred at the indicated temperature (78 or 50 °C, see text) until the aldehyde was completely consumed (15 min–48 h), as determined by TLC (30% EtOAc/hexanes). The reaction mixture was then filtered through a 1.5- x 8-cm plug of silica gel with Et2O (50 mL). Concentration of the ether solution gave a fluorescent green suspension, which was dissolved in THF (10 mL) and 1 N HCl (2 mL). After standing at room temperature for 15 min, this solution was poured into a separatory funnel and diluted with Et2O (10 mL) and H2O (10 mL). After mixing, the aqueous layer was discarded, and the ether layer was washed with saturated aqueous NaHCO3 (10 mL) and brine (10 mL). The resulting ether layer was dried over anhydrous MgSO4, filtered, and concentrated to provide the hydroxy esters.

Preparation of (S)-tert-Butyl 4-Benzoxl oxy-3-hydroxybutanethioate (7, Table 4, Entry 1). Compound 7 was prepared according to the general procedure using [CuPh-pybox][SbF6]2 (200 μL, 2.5 μmol, 0.5 mol %) and the silylketene acetal of tert-butyl thiaoctetate (122 mg, 0.60 mmol, 153 μL) to provide the pure (S)-hydroxy ester in 100% yield.57

yield (141 mg, 0.50 mmol). Enantiomeric excess was determined by HPLC with a Chiralcel OD-H column (94.2:0.8:5.0 hexanes/2-propanol/ EtOAc; 1.0 mL/min; (R) enantiomer \(t_\text{R} = 16.3 \) min; (S) enantiomer \(t_\text{S} = 17.9 \) min) or with a Chiralad AD column (96:4 hexanes/2-propanol/ EtOAc; 1.0 mL/min; (S) enantiomer \(t_\text{R} = 13.1 \) min; (R) enantiomer \(t_\text{S} = 16.5 \) min; 99% ee). The analytical data obtained from this material ([H NMR, 13C NMR, IR, and HRMS) were identical to those previously reported: \([\alpha]_D^{20} = 10.9 \) (c 3.0, CHCl\(_3\)); \([\alpha]_D^{20} \text{lit}^+ = 10.0 \text{ (c 1.0, CHCl}_3\) 96% ee (R).

Preparation of (S)-Ethyl 4-Benzoyloxy-3-hydroxybutanethioate (Table 4, Entry 2). This compound was prepared according to the general procedure employing [Cu(Ph-pybox)][SbF\(_6\)] (200 \(\mu\)L, 2.5 mmol, 0.5 mol %) and the silylketene acetal of ethyl thioacetate (106 mg, 0.60 mmol, 132 \(\mu\)L) to provide the pure adol adduct in 95% yield (121 mg, 0.048 mmol) after flash chromatography with 20% EtOAc/hexanes. Enantiomeric excess was determined by HPLC with a Chiralcel OD-H column (98:2 hexanes/2-propanol; 1.0 mL/min; (S) enantiomer \(t_\text{R} = 31.6 \) min; (R) enantiomer \(t_\text{S} = 35.7 \) min; 98% ee. The analytical data obtained from this material ([H NMR, 13C NMR, and HRMS) were identical to those previously reported: \([\alpha]_D^{20} = -10.6 \) (c 4.2, CHCl\(_3\)); \([\alpha]_D^{20} \text{lit}^+ = +11.4 \text{ (c 1.0, CHCl}_3\) 94% ee (R).

Preparation of (S)-Ethyl 4-Benzoyloxy-3-hydroxybutanethioate (Table 4, Entry 3). The silyl ether was prepared according to the general procedure employing [Cu(Ph-pybox)][SbF\(_6\)] (200 \(\mu\)L, 2.5 mmol, 0.5 mol %) and the silylketene acetal of ethyl thioacetate (106 mg, 0.60 mmol, 114 \(\mu\)L). Deprotection of the TMS ether using 1 N HCl caused decomposition to the retroaldol product; thus, a fluoride deprotection procedure was used instead. The crude silyl ether was dissolved in THF (5 mL) and cooled to 0 \(^\circ\)C. TBAF (1.0 M in THF, 0.60 mmol, 0.60 mL) was added dropwise. After 15 min, the solution was diluted with EtO\(_2\) (10 mL) and saturated NaHCO\(_3\) (10 mL) and poured into a separatory funnel. After mixing, the aqueous layer was discarded and the organic layer washed with brine (10 mL) and dried over MgSO\(_4\). Filtration and concentration gave the pure hydroxy ethyl ester in 99% yield (117 mg, 0.49 mmol) after flash chromatography with 20% EtOAc/hexanes. Enantiomeric excess was determined by HPLC with a Chiralcel OD-H column (94.2:0.8:5.0 hexanes/2-propanol/EtOAc; 1.0 mL/min): (S) enantiomer \(t_\text{R} = 24.8 \) min; (R) enantiomer \(t_\text{S} = 29.3 \) min; 98% ee; \(R_\text{f} = 0.20 \text{ (50\% EtOAc/hexanes); [\tau]_D^{20} = -13.7 \text{ (c 3.55, CHCl}_3\) IR (neat) 3438, 2864, 1740, 1716 cm\(^{-1}\); [H NMR (400 MHz, CDCl\(_3\)) \(\delta = 7.29 \text{ (m, 5H), 4.54 \text{ (s, 2H), } 4.30 \text{ (m, } 1\text{H), 3.65 \text{ (s, } 3\text{H), } 3.50 \text{ (dd, J = 4.5, 9.6 Hz, 1H), } 3.41 \text{ (dd, J = 4.5, 7.6 Hz, 1H), 2.78 \text{ (d, J = 5.9 Hz, } 2\text{H); [C NMR (400 MHz, CDCl}_3\) \(\delta = 128.8, 127.8, 73.5, 73.1, 66.8, 52.4, 49.7, 46.3; HRMS (Cl, NH\(_3\) exact mass calced for (C\(_{14}\)H\(_{20}\)O\(_5\)\(\text{NH}_4\)+ requires m/z 284.1478, found m/z 284.1498.

The hydroxy ketoester was subsequently reduced to the anti diol using tetramethylammonium acetoxoborohydride.\(^{57}\) A solution of tetramethylammonium acetoxoborohydride (11.8 g) in acetic acid (60 mL) was added to a –35 \(^\circ\)C solution of the ketoester in CH\(_2\)CN (100 mL) over 30 min. The resulting milky white solution was stirred at –35 \(^\circ\)C for 18 h and then quenched by the addition of a saturated solution of Rochelle salts (100 mL) and warming to room temperature. The resulting mixture was diluted with EtOAc and made basic with a saturated solution of Na\(_2\)CO\(_3\). The aqueous layer was discarded, and the organic layer was washed with brine (50 mL), dried over MgSO\(_4\), and concentrated to give the anti diol in 91% yield (1.6 g, 6.1 mmol) as a white solid. Product ratios were determined by HPLC with a Chiralcel OD-H column (90:10 hexanes/2-propanol; 1.0 mL/min): \(\text{syn} = 38\% \text{ ee; [\tau]_D^{20} = -30.2; [\tau]_D^{20} = -24\% \text{ ee; [\tau]_D^{20} = +40\% \text{ ee; [\tau]_D^{20} = +55\% \text{ ee.}

Preparation of (S)-3-Benzyl-3-hydroxy-2-propyl-1,3-dioxin-4-one (11, Eq 12). Compound 11 was prepared according to the general procedure using [Cu(Ph-pybox)][SbF\(_6\)] (2 mL, 0.025 mmol, 5 mol %) and the trimethylsilylketene acetal derived from 2,2,6-trimethyl-1,3-dioxin-4-one (58) Careful distillation is required in order to minimize thermal decomposition to the undesired isomer (bp 50 \(^\circ\)C at 0.1 mmHg, bath temp \(\leq 65\) \(^\circ\)C). See: Anderson, G.; Cameron, D. W.; Feutrill, G. I.; Read, R. W. Tetrahedron Lett. 1981, 22, 4347–4348.

at which point the solution turned brown. Freshly distilled benzyl-oxo-acetaldehyde (5 mL, 35.5 mmol) was added dropwise via syringe pump over 15 min (0.33 mL/min). After addition, the internal reaction temperature had risen to −85°C. After 5 min at this temperature and 15 min at −78°C, TCL analysis (30% EtOAc/hexanes) indicated consumption of the starting aldehyde (Rf 0.25). The cold reaction mixture was poured directly onto a deactivated (5% EtOAc/hexanes) silica gel plug (5.5 cm × 12 cm) and eluted rapidly with EtO (1.5 L). The filtrate was concentrated in vacuo to yield a yellow oil.

The yellow oil was dissolved in 100 mL of anhydrous MeOH and treated with pyridinium p-toluenesulfonate (50 mg). When hydrolysis was complete (1−2 h) by TLC (SM Rf 0.51; 30% EtOAc/hexanes), the volatiles were removed in vacuo, and the yellow oil obtained was purified by flash chromatography with 20−70% EtOAc/hexanes to provide a keto−enol tautomeric mixture of tert-buty1 (R)-6-benzyloxy-5-hydroxy-3-oxohexanoate (ketone Rf 0.19, enol Rf 0.11; 30% EtOAc/hexanes) as a yellow oil in 85% yield (9.37 g, 30.2 mmol).21

A small sample (ca. 1−2 mg) of the purified product was converted to the Mosher ester by the method of Ward and Rhee (S)-MTPA-Cl, DMAP, CH2Cl2). This material was directly analyzed by HPLC with a Zorbax SIL column (5% EtOAc/hexanes, 1.0 mL/min); (S,R) diastereomer tr = 22.7 min; (R,R) diastereomer tr = 26.2 min; >99% de.

The original silica plug used to remove the copper catalyst was flushed with 750 mL of 20% concentrated NH4OH MeOH and the filtrate concentrated in vacuo. The residue was partitioned between CH2Cl2 (100 mL) and concentrated NH4OH (100 mL), and the layers were separated. The organic layer was washed with concentrated NH4OH (2 × 100 mL each), water (100 mL), and brine (100 mL). The organic extracts were dried over anhydrous Na2SO4, filtered, and concentrated in vacuo to yield a yellow oil.

To a cooled (−15°C) solution of freshly distilled benzyloxy-acetaldehyde (5 mL, 35.5 mmol) was added diethylmethoxyborane (4.7 mL, 36 mmol), and the solution was stirred for 10 h at −20°C (desired); (35,5R) tr = 14.1 min (35,5S) tr = 15.2 min and 19.4 min (exact assignment undetermined for anti diols). The analytical data obtained from this material are consistent with those previously reported.21

Preparation of (2S,3S)-Ethyl 4-Benzoyloxy-3-hydroxy-2-methylbutanethioate (Table 5, Entry 1). This compound was prepared according to the general procedure employing [Cu(Ph-pybox)][SbF6]2 (3.0 mL, 0.05 mmol, 10 mol %) and the silylketene acetal of ethyl thiopropionate as a 95:5 mixture of Z:E isomers (114 mg, 0.60 mmol, 130 μL). The product was obtained as a clear oil in 90% yield (121 mg, 0.15 mmol) after flash chromatography with 20% EtOAc/hexanes. Product ratios were determined by HPLC with a Chiralcel OD-H column (55.1:5.3 hexanes/2-propanol/EtOAc; 1.0 mL/min); syn-(2S,3S) tr = 12.6 min; syn-(2R,3R) tr = 14.3 min; anti-(2R,3S) tr = 15.2 min; anti-(2S,3R) tr = 17.5 min; 97:3 syn:anti; 99% syn ee. The analytical data obtained from this material (1H NMR, 13C NMR, and HRMS) were identical to those previously reported:4c [α]D +41.1 (c 3.6, CH2Cl2); [α]D0 (lit.3) = +3.5 (c 1.0, CHCl3); syn:anti 72:28, 90% syn ee (2R,3R).

Preparation of (2S,3S)-Ethyl 4-Benzoyloxy-3-tert-butyldimethylsiloxy-2-methylbutanethioate (Table 5, Entry 3). The silyl-ether protected adduct could also be obtained directly, according to the general procedure employing [Cu(Ph-pybox)][SbF6]2 (3.0 mL, 0.05 mmol, 10 mol %) and the tert-butyldimethylsilylketene acetal of ethyl thiopropionate as a 94:6 mixture of Z:E isomers (139 mg, 0.60 mmol, 161 μL). The silyl ether product (after filtration away from the copper catalyst through SiO2) was not subjected to the deprotection procedure in the general procedure but was purified by flash chromatography with 0−30% EtOAc/hexanes. A small amount of the alcohol adduct (∼10%, not isolated in pure form) was obtained, but the major product was the tert-butyldimethylsiloxane ether, which was obtained as a clear oil in 68% yield (130 mg, 0.34 mmol); [α]D +12.46 (c 0.92, CH2Cl2); IR (CH2Cl2) 2931, 2858, 1680 cm−1; 1H NMR (500 MHz, CDCl3) δ 7.33 (s, 3H), 4.54 (d, J = 12.0 Hz, 1H), 4.47 (d, J = 12.0 Hz, 1H), 4.21 (app q, J = 5.5 Hz, 1H), 3.41 (d, J = 5.7 Hz, 2H), 2.88 (dq, J = 5.2, 6.9 Hz, 1H), 2.84 (q, J = 7.4 Hz, 2H), 1.22 (t, J = 7.4 Hz, 3H), 1.17 (d, J = 6.9 Hz, 3H), 0.86 (s, 3H), 0.03 (s, 3H), 0.02 (s, 3H); 13C NMR (100 MHz, CDCl3) δ 202.0, 138.1, 128.3, 127.6, 73.5, 72.3, 73.2, 72.3, 52.8, 25.8, 23.1, 18.1, 14.6, 11.8, −4.4, −5.0; LRMS (FAB/NBA + Na) m/z 405 MN+; HRMS (FAB/NBA + Na) exact mass calcd for (C20H34O3SiSNa+) requires m/z 405.1896, found m/z 405.1891. Product ratios were determined after conversion to the alcohol with aqueous HF in MeCN. The combined silyl ether alcohol and alcohol products in MeCN (1.5 mL) were treated with 40% HF/H2O (0.5 mL). After 30 min, TLC (30% EtOAc/hexanes) indicated complete consumption of the silyl ether, and the reaction mixture was quenched with saturated NaHCO3 (5 mL). The resultant mixture was extracted with CH2Cl2 (3 × 10 mL). The combined organic layers were dried over anhydrous Na2SO4, filtered, and concentrated to provide the hydroxy ester. Purification by flash chromatography with 10−20% EtOAc/hexanes provided the title compound as a clear, colorless oil in 79% yield (93 mg, 0.35 mmol). The analytical data obtained from this material (1H NMR, 13C NMR, and HRMS) were identical to those described above for the alcohol obtained from the corresponding trimethylsilyl ether. Product ratios were determined for the alcohol by HPLC with a Chiralcel OD-H column (95.5:4.5 hexanes/2-propanol/EtOAc; 1.0 mL/min); syn-(2S,3S) tr = 12.6 min; syn-(2R,3R) tr = 14.3 min; anti-(2R,3S) tr = 15.2 min; anti-(2S,3R) tr = 17.5 min; 93:7 syn:anti; 96% syn ee. (2S,3S)-Ethyl 4-Benzoyloxy-3-hydroxy-2-isobutylthiophanethioate (Table 5, Entry 4). This compound was prepared according to the general procedure employing [Cu(Ph-pybox)][SbF6]2 (3.0 mL, 0.05 mmol, 10 mol %) and the silylketene acetal derived from ethyl 4-methylpentanethioate as a 90:10 mixture of Z:E isomers (174 μL, 0.60 mmol) to provide the pure product as a clear oil in 85% yield.

hexanes. Product ratios were determined by HPLC with a Chiralcel AD column (99:1 hexanes/2-propanol; 1.0 mL/min): syn-(2R,3R) t₁ = 17.4 min; anti-(2R,3S) t₁ = 15.5 min; anti-(2R,3R) t₁ = 17.5 min; anti-(2R,3S) t₁ = 20.9 min; 85:15 syn:anti; 99% syn ee. The analytical data obtained from this material (1H NMR, 13C NMR, and HRMS) were identical to those previously reported: [α]²⁰ = +49.0 (c 3.8, CH₂-Cl₂); [α]²⁰ = +103° (c 1.0, CDCl₃); syn:anti = 8:92; 90% anti ee (2S,3R).

Preparation of (2S,3S)-tert-Butyl 4-Benzoylxy-3-hydroxy-2-methylbutyrolactone (Table 5, Entry 5). This compound was prepared according to the general procedure employing [Cu(Ph-pybox)][SbF₆]₂ (3.0 mL, 0.05 mmol, 10 mol %) and the silylketene acetal of tert-butyl propionate as a 9:1 mixture of Z:E isomers (149 mmol, 0.60 mmol) after flash chromatography with 10–20% EtOAc/hexanes. Deprotection of the TMS ether using 1 N HCl also caused retroaldol reaction, as observed by TLC (30% EtOAc/hexanes). This decomposition accounts for the low yield, as ¹H NMR indicated 95% conversion.

Preparation of (2S,3S)-Ethyl 4-Benzoylxy-3-hydroxy-2-methylbutyrate (Table 5, Entry 7). This compound was prepared according to the general procedure employing [Cu(Ph-pybox)][SbF₆]₂ (3.0 mL, 0.05 mmol, 10 mol %) and the silylketene acetal of ethyl propionate as an 85:15 mixture of Z:E isomers (131 mg, 0.75 mmol, 163 μL), except that the reaction was performed at −95 °C (liquid N₂/hexanes bath). The product was obtained as a clear oil in 60% yield (76 mg, 0.30 mmol) after flash chromatography with 10–20% EtOAc/hexanes. Deprotection of the TMS ether using 1 N HCl also caused retroaldol reaction, as observed by TLC (30% EtOAc/hexanes). This decomposition accounts for the low yield, as ¹H NMR indicated 95% conversion. Product ratios were determined by HPLC with a Chiralcel OD-H column (60% hexanes/EtOAc; 0.5 mL/min): syn-(2R,3R) t₁ = 21.8 min; anti-(2R,3S) t₁ = 23.0 min; anti-(2R,3R) t₁ = 26.1 min; 91:9 anti: syn; 92% anti ee; [α]²⁰ = –77.1 (c 5.1, CH₂-Cl₂); Anti isomer: IR (CH₂Cl₂) 3618, 3569, 3067, 2913, 2872, 1790, 1759, 1759, 1161, 1090, 1045 cm^{–1}; ¹H NMR (400 MHz, CDCl₃) δ 7.67 (dd, δ = 1.3, 5.7 Hz, 1H), 7.33 (m, 5H), 6.16 (dd, δ = 1.8, 5.7 Hz, 1H), 1.05 (dt, δ = 6.9, 1.7 Hz, 1H), 4.60 (d, δ = 11.9 Hz, 1H), 4.57 (dt, δ = 11.8 Hz, 1H), 3.76 (dt, δ = 6.8, 3.8 Hz, 1H), 3.73 (dd, δ = 3.7, 9.5 Hz, 1H), 3.70 (dd, δ = 4.2, 9.5 Hz, 1H), 2.71 (br s, 1H); 13C NMR (100 MHz, CDCl₃) δ 172.7, 155.1, 137.3, 128.6, 128.1, 127.9, 122.1, 82.7, 73.7, 71.3, 70.4; LRMS (CI/NH₄) m/z 235 (M⁺)⁺ 252 (M + NH₄)⁺; HRMS (CI/NH₄) exact mass calced for (C₂₀H₂₂O₄S + NH₄)⁺ requires m/z 252.1236, found m/z 252.1238.

Preparation of (S)-5-Benzoylxy-4-hydroxypentan-2-one (Table 6, Entry 1). This compound was prepared according to the general procedure employing [Cu(Ph-pybox)][SbF₆]₂ (4.0 mL, 0.10 mmol, 100 mol %); except that less benzoyloxycetaldehyde (14 μL, 0.10 mmol) and the enolisate of acetone (33 μL, 0.20 mmol) were used. The product was obtained as a clear oil in 9% yield (10 mg, 0.04 mmol) after flash chromatography with 60% EtOAc/hexanes. Product ratios were determined by HPLC with a Chiralcel OD-H column (90:10 hexanes/EtOAc; 1.0 mL/min): anti-(S)-4R t₁ = 16.7 min; anti-(S)-4R t₁ = 21.8 min; 10:9 anti: syn; 99% anti ee; [α]²⁰ = –77.1 (c 5.1, CH₂-Cl₂); Anti isomer: IR (CH₂Cl₂) 3608, 3581, 3068, 2932, 2863, 1727 cm^{–1}; ¹H NMR (400 MHz, CDCl₃) δ 3.74 (m, 5H), 4.56 (d, δ = 12.0 Hz, 1H), 4.53 (d, δ = 12.0 Hz, 1H), 4.12 (q, δ = 7.1 Hz, 2H), 4.07 (app q, δ = 5.6 Hz, 1H), 3.52 (dd, δ = 4.6, 9.5 Hz, 1H), 3.48 (dd, δ = 6.2, 9.5 Hz, 1H), 2.75 (br s, 1H), 2.65 (dd, δ = 5.6, 7.2 Hz, 1H), 1.24 (t, δ = 7.2 Hz, 3H), 1.21 (d, δ = 7.2 Hz, 3H); 13C NMR (100 MHz, CDCl₃) δ 175.2, 136.6, 128.4, 128.7, 127.7, 73.4, 71.6, 70.9, 60.6, 42.0, 14.1, 11.9; LRMS (CI/NH₄) m/z 253 (M⁺)⁺ 270 (M + NH₄)⁺; HRMS (CI/NH₄) exact mass calced for (C₁₃H₁₄O₄S + H⁺)⁺ requires m/z 253.1440, found m/z 253.1437.
Aldol Addition of Enolines to (Benzyloxy)acetalddehyde

J. Am. Chem. Soc., Vol. 121, No. 4, 1999 685

general procedure employing [Cu(Ph-pybox)](SbF 6) 2 (4.0 mL, 0.10 mmol, 100 mol %), except that less benzyloxyacetalddehyde (14 μL, 0.10 mmol) and the enolsilane of acetophenone (20 μL, 0.11 mmol) were used. The pure product was obtained as a white crystalline solid in 80% yield (21 mg, 80 μmol) after flash chromatography with 20% EtOAc/hexanes. Enantiomeric excess was determined by HPLC with a Chiralcel AS column (90:10 hexanes/2-propanol; 1.0 mL/min): (S) enantiomer t R = 13.1 min; (R) enantiomer t R = 33.9 min; 94% ee; mp 46.5–47.0 °C; [α] D 25 = −21.4 (c 0.46, CH 2 Cl 2); IR (CH 2 Cl 2) 3682, 3576, 2974, 1705 cm −1; 1 H NMR (400 MHz, CDCl 3) δ 7.32 (m, 5H), 7.27 (septet, J = 6.9, 1H), 4.61 (dd, J = 12.0, 1H), 1.48 (d, J = 6.9, 3H), 2.36 (dd, J = 12.0, 1H); 13 C NMR (100 MHz, CDCl 3) δ 137.8, 136.7, 133.5, 128.6, 128.4, 127.7, 127.6, 72.6, 68.8, 51.1, 38.7, 23.7, 20.7; LRMS (EI) m/z 234 M +; HRMS (EI) exact mass calcd for (C 17 H 18 O 3) + + requires m/z 234.1256, found m/z 234.1273.

Preparation of (R)-tert-Butyl 4-Benzoylhydroxybutanethiolate Using [Cu(tert-But-Bu)](OTf) 2 as the Catalyst (7, Table 7, Entry 1) (General Procedure for [Cu(tert-But-Bu)](OTf) 2 in the Benzyloxyacetalddehyde Aldol Reactions). To a −78 °C solution of [Cu(tert-But-Bu)](OTf) 2 (0.05 mmol, 10 mol %) in CH 2 Cl 2 (2 mL) was added benzyloxyacetalddehyde (70.0 μL, 0.50 mmol) followed by the silylketene acetal of tert-butyl thioacetate (122 mg, 0.60 mmol, 153 μL). The resulting solution was stirred at −78 °C until the aldehyde was completely consumed (1 h), as determined by TLC (30% EtOAc/hexanes). The reaction mixture was then filtered through a 1.5 × 8 cm plug of silica gel with Et 2 O (50 mL). Concentration of the ether solution gave a clear oil, which was dissolved in THF (10 mL) and 1 N HCl (2 mL). After standing at room temperature for 15 min, this solution was poured into a separatory funnel and diluted with Et 2 O (10 mL) and H 2 O (10 mL). After mixing, the aqueous layer was discarded, and the ether layer was washed with saturated aqueous NaHCO 3 (10 mL) and brine (10 mL). The resulting ether layer was dried over anhydrous MgSO 4 , filtered, and concentrated. Purification by flash chromatography with 20% EtOAc/hexanes provided the pure (R)-hydroxy ester. Enantiomeric excess was determined by HPLC with a Chiralcel OD-H column (94:2:8:5.0 hexanes/2-propanol/EtOAc/OH 2 O; 1.0 mL/min): (R) enantiomer t R = 16.3 min; (S) enantiomer t R = 17.9 min; 91% ee. The analytical data obtained from this material (1 H NMR, 13 C NMR, and HRMS) were identical to those described above, with the exception of the optical rotation, which was of the opposite sign: [α] D 25 +10.4 (c 2.9, CH 2 Cl 2).

Other aldheyd aldol reactions with the [Cu(tert-But-Bu)](OTf) 2 catalyst were performed analogously using the indicated silylketene acetal and aldehyde.

Acknowledgment. Financial support was provided by the NSF, Fellowships from the NSF (M.C.K., B.T.C.), NIH (J.A.M.), and American Cancer Society (C.S.B.) are gratefully acknowledged. The NIH BRS Shared Instrumentation Grant Program 1-S10-RR04870 and the NSF (CHE 88-14019) are acknowledged for providing NMR facilities. The amino alcohols utilized in the preparation of the box and pybox ligands were generously provided by NSC Technologies.

Supporting Information Available: General experimental information; absolute and relative stereochemical proofs; minor diastereomer characterization data; nonlinear effects experiments; silyl crossover experiments; double stereodifferentiating experiments; EPR spectra; ESI data; and X-ray crystallographic data (PDF). This material is available free of charge via the Internet at http://pubs.acs.org.

JA9829822